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Inertia effects on the motion of long slender bodies 
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and Applied Mechanics, McGill University, Montreal, Canada H3A 2K6 

(Received 5 April 1988 and in revised form 7 April 1989) 

A solid long slender body with curved centreline is held a t  rest in a fluid undergoing 
a uniform flow. Assuming that the Reynolds number Re based on body length is 
fixed, the force per unit length on the body is obtained as an asymptotic expansion 
in terms of the ratio K of the cross-sectional radius to body length. In the limit of 
largelie, this result is no longer valid and an asymptotic expansion in KRe is necessary. 
A uniformly valid solution is obtained from these two expansions. The total force and 
torque acting on a body with a straight centreline are explicitly determined. The 
limiting cases of small and large Re are studied in detail. 

1. Introduction 
The motion of a fluid around a single isolated body has long received considerable 

attention. While flow a t  low Reynolds number has been extensively studied 
analytically (see for example Happel & Brenner 1963), the case of high-Reynolds- 
number flow has been studied mostly by using numerical methods because of the 
difficulty in dealing with the nonlinear inertia terms in the Navier-Stokes equation. 

However, by making an expansion in terms of the Reynolds number (assumed 
small) the hydrodynamic force on a sphere and on an infinite cylinder placed in a 
uniform flow was obtained by Proudman & Pearson (1957). The results for the sphere 
were extended by Brenner & Cox (1963) to bodies of arbitrary shape. 

Since the cases of moderate and high Reynolds number are of practical importance, 
it is of interest to investigate the flow around a class of bodies of irregular shape for 
which one may solve analytically the flow equations including inertia effects. In  this 
paper, we calculate the hydrodynamic force acting on a long slender solid body of 
arbitrary cross-sectional shape held fixed in a uniform flow field. The body centreline 
need not necessarily be straight. If such a body is of length 2a and has a characteristic 
cross-sectional lengthscale b, expansions of the velocity and pressure fields for the 
flow about such a body are made in terms of the parameter K = b/a.  Inertia effects 
are included with the Reynolds number Re based on the body half-length a being 
arbitrary and not restricted to any particular range of values. However, the 
Reynolds number R based on the cross-sectional dimension b is assumed small. Such 
a body is a suitable model for a rigid fibre or thread-like particle. After the detailed 
statement of the problem considered (52), the hydrodynamic force per unit length on 
the particle is calculated (553-5) by the method of matched asymptotic expansions. 
Results for a particle with straight centreline and circular cross-section are then 
considered in $6. It is then shown that in the case of a body of infinite length, the 
expansion in terms of K ceases to be valid. Instead, an expansion in R is necessary. 
This expansion is obtained in $ 7  together with a solution which is universally valid 

t Present address : Department of Chemistry, McGill University. 
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FIGURE 1. A long slender body at rest in a fluid with an undisturbed uniform flow U. 

in the double limit K + 0, R --f 0. The results for the force per unit length and the total 
drag, lift and torque on the particle for various limiting cases are discussed in $8. In 
particular a discrepancy between the present results and those obtained by Chwang 
& Wu (1976) for a slender spheroidal particle is explained. 

2. The general problem 
Consider a long slender body whose cross-sectional shape is non-circular and varies 

along the body centreline. The length of the body is 2a and the characteristic 
dimension of the cross-sectional shape is b. The body centreline may be assumed bent 
in any manner whatsoever as long as the radius of curvature of such a bending is at  
all points of order a. The distance along the body centreline measured from the 
centreline midpoint is s' (see figure 1). 

Locally at  a general point P on the body centreline we define a set of Cartesian axes 
(2, y', z') and a set of cylindrical polar coordinates (p" ,  8, Z') with origin at  P and the 
9 axis tangent to the body centreline as shown in figure 2 .  The cross-sectional shape 
of the body at P may be written as p" = bh(s,  e), where h is a dimensionless function 
of s and 8. Here s is the dimensionless distance along the body centreline given by 

s = s'/a (2.1) 

so that - 1. < s < 1 with the two ends of the body being s = - 1 and s = 1. We assume 
that the ratio K = b/a  < 1, i.e. the body is slender. 

The body is considered at  rest in a fluid (of viscosity p and density p)  in which there 
is a uniform undisturbed flow field of (dimensional) velocity U. Associated with U is 
the constant free-stream pressure which, without loss of generality, may be taken to 
be zero. We are interested in obtaining the drag force on the body in the limit as 
K -f 0 with the Reynolds number Re = pi UI alp based on the body length assumed to 
be of order unity. The Reynolds number R = pi UI b / p  E KRe based on the body cross- 
sectional dimension then tends to zero. I t  is in terms of the parameter K that we shall 
make expansions of the velocity and pressure fields. However, one should note that 
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A, 
FIGURE 2. The cylindrical coordinate system (p’, 0 , s )  showing local cross-sectional shape. 

this type of expansion must be singular since the flow locally around the long slender 
body must be very nearly the flow around an infinite cylinder a t  zero Reynolds 
number R, and it is well known (Stokes’ paradox) that it is impossible for such a flow 
field to  satisfy the equations of motion and a t  the same time to satisfy the no-slip 
condition on the surface of the infinite cylinder and also to make the velocity tend 
to  the uniform flow a t  infinity. 

The dimensionless position vector r ,  flow velocity u and pressure p are defined in 
terms of the corresponding dimensional quantities r’, u’ and p‘ as follows: 

where U = JUJ. Unless otherwise stated, we use unprimed variables to denote 
dimensionless quantities. The vector r is the dimensionless position vector of a 
general point relative to a fixed set of rectangular Cartesian coordinates with origin 
0 (see figure 1)  so that the body centreline itself is given by r = R(s) .  The governing 
equations of momentum and continuity for ( u , p ) ,  in dimensionless form are 

Reu-Uu = V u - U p ;  V - u  = 0. ( 2 . 3 ~ )  

We intend to solve ( 2 . 3 ~ )  as an expansion in K using the boundary conditions 

u + e  as r+co  (2.3b)  

and u = 0 on the body surface, ( 2 . 3 ~ )  

where e is the unit vector in the direction of the uniform undisturbed flow. This will 
require obtaining a solution as an outer expansion in K valid in a region (the outer 
region), where r is of order unity, so that in this region lengths are made 
dimensionless by a and, as K + O ,  the body becomes a line singularity (see figure 3). 

At each point P (at r = R P )  of the body centreline one may define an inner 
expansion in K for which is used as the independent variable and ii and p as 
dependent variables, where F, u and p are given by 

We write r=  ( Z , ~ , Z ) ,  where the z, y and Z are respectively 2, y’ and Z’ made 
dimensionless by b. In  the inner expansion corresponding to a point P of the body 
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FIGURE 3. The outer region in which lengths are made dimensionless by a. The body becomes a 
line singularity as K + 0. 

centreline, lengths are made dimensionless by b so that, as K --z 0, the body becomes 
very much like a non-circular cylinder of infinite length. Actually, one has an infinite 
number of inner expansions corresponding to each point of the line singularity 
representing the body in the outer expansion. However, all such inner expansions 
may be considered simultaneously by taking a general point P of the line singularity. 
The inner expansion a t  such a point is then matched onto the solution of the outer 
expansion at  the same point P. 

3. Matched asymptotic expansion 
3.1. Inner expansion 

At a general point P of the body centreline consider now the inner expansion. The 
flow field ( i i , p )  in the vicinity of the point P is to be computed by solving the 
governing motion equations (2.3) expressed in inner variables, i.e. 

KRea.Vu= v2u-vq; V . u =  0, (3.1) 

with u = 0 on the body surface. Here V is the gradient operator with respect to the 
(z, 8, ?+coordinates. 

No outer boundary condition will be imposed on s a t  this stage since this will be 
determined by matching. 

Relative to the inner dimensionless coordinates X, and z, a dimensionless 
cylindrical polar coordinate system (p, 8, Z) is defined with p = p'jb so that 

z = pcos8, ij = psin8. (3.2) 

We suppose that A(s, 0 )  varies slowly with s. The value of ii may then, at lowest 
order, be calculated in the same manner as for Re = 0 (Cox 1970; Batchelor 1970) and 
be shown to possess for p+ co the asymptotic form 

(a,,),- N [ 2  In e) + 11 [ c ( K )  cos e + D ( K )  sin 81 

+2(K,,co~8+K,,sin8) C(~)+2(K, ,cos8+K~,sinO)D(~),  ( 3 . 3 ~ )  
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- [ 2 In @) - 11 [ D ( K )  cos 8 - c ( K )  sin 01 

+ 2(K,, cos 8 - K,, sin 8)  C(K)  + 2(K,, cos 8- Kzy sin 8 )  D(K),  (3 .3b )  

(a& = E ( K ) l n ( L ) + o & ) ,  

jio - 4p-' [C(K) cos 8 +D(K) sin 191 + F(K) .  

(3.3C) 

( 3 . 3 4  

Here K is a constant scalar and Kij a constant symmetric tensor whose values 
depend only on the local cross-sectional shape (but not on the cross-sectional size) a t  
the point of the body considered (see Batchelor 1970). For a circular cross-section 
K = 1 and Ki, = 0. It will be seen later that C(K),  D(K) ,  E(K) and F(K)  must be taken 
as functions of K .  The changing of ( 3 . 3 )  to outer variables yields the inner boundary 
condition on the flow field ( u , p )  of the outer expansion. Using for the outer region 
polar coordinates ( p ,  8, z )  corresponding to the (p, 8, coordinates where 

p = K p ,  X = KT, (3 .4 )  

the inner boundary conditions on the outer flow field ( u , p )  may be obtained. In  this 
procedure in order that no terms singular in K should appear in the outer expansion, 
i t  is seen that C(K) ,  D(K) ,  E (K)  and F(K)  must be of the form (see Cox 1970) 

+..., Dl Dz +..., D ( K )  = -+- c Cz 
1nK (1nK)Z 1nK ( l n K ) 2  

C ( K )  = L+- 

K F l  E(K) = El -+- Ez + ..., F ( K )  = KFo+- +... . 
1nK (lnK)2 In K 

(3 .5a ,  b )  

(3 .5c ,  d )  

Thus upon the use of (3 .3 ) ,  (3 .4 )  and ( 3 . 5 ) ,  it is seen that in the limit p+O,  (i.e. for 
a point r which moves in towards the singularity line r = R(s)  at the point P ) ,  the 
outer flow field ( u , p )  has the following form: 

+2(K,,C1+K,,D1) 2D,+Dl-2Dlln 

+2(K,,G,+K,,D,) ( 3 . 6 ~ ~ )  

uo - -2(C,sin8-D1cos8)+ -2Gz+C,+2C,ln 

- 2(K,, C, - K,, Dl) 

(3 .6b )  

( 3 . 6 ~ )  
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/ 6 
FIGTJRE 4. The system of axes with unit base vectors i f ,  ig, i,. 

and 

[ 4 p - 1 ( C ~ c o s 6 + ~ l s i n ~ ) + ~ ~ ] + 0  - , 
(1:Ky 

(3.6d) 

3.2. Outer expansion 
We recall that the outer flow field ( u , p )  satisfies ( 2 . 3 ~ )  with the outer boundary 
condition that u+ e as r+  00 (where e is a unit vector in the undisturbed flow 
direction). From the form of the inner boundary conditions (3.6) on ( u , p )  it would 
seem reasonable (Cox 1970) to assume ( u , p )  has an expansion of the form 

(3.7a, b )  

where the zeroth-order term represents the free-stream flow. At a general point P on 
the line singularity r = R(s) it is convenient to take a set of rectangular Cartesian 
axes with unit base vectors iz7 is and ig which lie in the same direction as the 
(z,z,g)-axes a t  P (see $2).  Thus iz lies in the direction of the tangent to r = R(s) 
at  P. Since the E and g axes were arbitrary, one may now, for convenience, take iz to 
lie in the plane containing i,- and the velocity vector e (see figure 4 ) .  Thus the unit 
vectors iz, i, and ig are 

(3.8a, b, c )  

where t ( s )  = dR/ds is a unit vector in the tangent direction and / is the idemfactor. 
The terms in (3.7) of order unity must behave near the line r = R(s)  like the terms 

of order unity in (3.6). Hence 

e ,  = 2C1, eg = 2D1, eZ = -E 1, 0 = Fo, (3 .9)  

where e,, eg and e, are the components of e along the E-,  g- and z-axes. Therefore, 
upon using (3 .8)  the values of C,, D,, El and Fo are given by 

C ,  = $.[l-le.t12]i, D, = 0, El = - e a t ,  Fo = 0. (3.10) 
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By matching of terms of order l/lnK in (3.7), it is seen that the flow field ( u l , p l )  near 
the line r = R(s)  must behave as p + 0 like 

(uJP - - 2C, cos 8 In p + (2C, + C, + 2C, In R,(s) 

(ul)@ - ZC, sin B In p + ( - 2C, + C ,  - 2C, In R,(s) 

+ 2Kzz C,) cos B+ 2(B, +KVz C,) sin 8 + . . . , 

- 2K,, C,) sin 8+ 2 ( 0 ,  +K,, C,) cos 8+ .  . ., 
(uJZ - E,lnp-E,-E,lnKR,(s)+ ..., 

p ,  - 4p-'c,cos8+Fl+ .... 

(3.11) 

It can be shown (see Cox 1970) that the singular part of (u l ,p , )  given by (3.11) (i.e. 
the terms of order lnp for u, and of order p-l for p l )  represents a line of force on 
r = R(s)  with strengthf*(s) per unit length given by 

f*(s) = ( ~ x C , )  i,- ( ~ x E , )  iz, (3.12) 

which by (3.8) and (3.10) becomes 

f * ( s )  = 4 ~ [ e . ( / - $ t ) ] .  (3.13) 

Upon substituting the expansions (3.7) for ( u , p )  into (2.3) it  is seen that i t  is 
identically satisfied at O( l/ln K)' but that at O( l/ln K )  one obtains 

Ree-Wu, = V2u,-Vpl ;  V - u ,  = 0. (3.14) 

4. The outer flow solution 

subject to the boundary condition 
The governing equations (3.14) for the outer flow field ( u , , ~ , )  are to be solved 

u,+O as r+oo (4.1) 

and representing the line of force f*(s) on r = R(s) .  Equation (3.14) is Oseen's 
equation for a uniform flow in the direction e .  It possesses a solution for u1 and p ,  for 
a point force ( f,, f2 ,  fa) located at  the origin, given by (see Happel & Brenner 1970)t 

where r is the radial distance from the origin defined by 

r = (r,r,)t = Irl, 

and where @(r)  is defined by 

(4.3) 

(4.4) 

t Repeated indices refer to summation over the index unless otherwise specified. 
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Thus the flow field (u,,p,) due to the line of forcef*(s) on 
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where the function gij(r) is defined by 

r = R(s) is given by 

(4 .5a)  

(4.5b) 

The integration is taken over the line - 1 < s” < 1 and R represents the value of r at  
a point s = s” on the line of force. The substitution of the value off*($) from (3.13) into 
the above expressions yields 

(4.6) 

1 ’  
(U1)i = 5[- lg+j (r -d)  ( s j k - $ j ( s ) t k ( e ) )  ekdS,  

In  order to match this value (u , , p l )  onto that of the inner expansion, one requires the 
asymptotic behaviour of u,, p , )  near the line singularity r = R(s) .  Since the 
integrands for u, and p ,  become singular on the line of force, we write 

(u , )~  = J i + J t ,  p ,  = H+H*,  (4.7) 

where Ji and H are the integrals taken over the intervals ( -  1, s - e )  and ( s  + F ,  1)  
whilst J,* and H* are the integrals taken over the remaining interval (s- e,  s + E). The 
quantity e is assumed to be an arbitrary constant (independent of K )  very much 
smaller than unity. Since the integrands only become singular a t  s” = s if r lies on the 
line singularity, it  follows that the integrals Ji  and H have intcgrands with no 
singularity, although the values of these integrals will tend to infinity as E --f 0. 3‘  ince 
E 6 1, the integrals J: and H* may be simplified if one notes that s z s” in the range 
of integration. Therefore, 

J,* = $ ( ~ ? ~ , - $ t ~ t ~ ) e , I ~ ~ ,  H* = (8j , -$t j t , )ekIj ,  (4.8) 
where 

ri - Ri 

8--E s--c. Ir -RI3 
1, = gij(r - R )  ds”, Ii  = r’‘ ds”. (4.9) 

For fixed but small E ,  as we approach the line singularity, i.e. in the limit as p -+ 0, 
the flow approaches that due to a line of constant force acting on the x-axis. Thus one 
may obtain asymptotic forms of lij and I, for p + 0 .  Then from (4.7) and (4.8) the 
asymptotic forms of u, and p ,  may be obtained as 

(4.10) 

( u , ) ~  N - e ,  cos Blnp+ ex(ln 2e+ 1 )  cos 8+ Jx cos 8+ J, sin 8, 

(ul)@ - ex sin 8 In p - e ,  In 2e sin 8 - J, sin 8 + Jv cos 8, 

(uJZ N e,(-lnp+In2~-+)+J, ,  

p, - 2ex p-lcos 8 + H 
for p+o.  
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Comparing these equations with the asymptotic form (3.11) of (u , ,p , )  near r = R(s)  
obtained from the outer limit of the inner solutions, it is observed that the terms of 
order lnp in u, and order p-l in p ,  are identical (as they must be since solutions have 
already been matched to this order). We obtain, on matching terms of order p o ,  

(4.11) I e,(ln2e+ 1) + J, = 2C, +C, + 2C1 InR, +2(K,, C, +K, ,D, ) ,  

J, = 2 0 ,  + 2K,, C,, 

e,(ln 2 e - f )  + J, = - E,-E,  In (Kli , ) ,  

H = F,. 

By making use of the expressions (3.9) for C,, D, and E l ,  the values of C,, D, and E, 
may be obtained from (4.11). These, when substituted into (3 .5) ,  give the following 
expressions : 

(4.12) I C(K)  = 

D(K) = &(Jy-ee,K,,)(lnK)-2+... , 

E(K)  =-e,(ln~)-,+ 

F ( K )  = &(ln ~ ) - l +  . . . . I 

5.  Force on body 
The total force per unit length acting on the body can be found from the 

asymptotic form of the inner flow field, as p+ 00, or equivalently the outer flow, as 
p + O .  The evaluation of the force is carried out in a manner similar to Cox (1970), 
where it is shown that the dimensional force per unit lengthf(5) is given by 

If we substitute the expressions (4.12) for C(K) ,  D(K)  and E(K)  into (5.1), and make 
use of (3.8), we obtainfls) as 

+ e - ($t - /) + 2e. K + e . tt In K ] ( 3 + 0 ( &  (5 .2)  

where J is by definition a vector given by 

where R is the value of r a t  the point on the centreline under consideration and R 
is the value at  the point on the centreline with s = s”. Substitution of the value of gi i ,  

16 FLM 209 
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obtained from (4.4) and (4.56) yields the value of Ji as 

2 [  1 - e-iRe [IR-RI-e. (R-R)] 

IR - 21z [ IR - 21 - e - ( R  - 2)] 

- (Ri -I& - IR-21 e i )  ( R , - f j -  IR-21 ej)] 

+ 

- (Ri - 

e-tRe [IR-iil-e. (R-&l 

[&,IR - 2 - I R  - 21 el2 
JR - 2 1 2  [ I R  - 21 - e -  ( R  -2)l 

- IR - 21 ei ) (R, - I?, - IR - RI ej) ] ( ej - it,( i) t k (  s”) e k )  di. (5.4) 

It should be pointed out that the value offls) given by (5 .2)  into which the above 
value of J i s  substituted must be independent of the arbitrary small parameter c with 
the term ( lne)e . ( t t -22/)  in (5 .2 )  cancelling with the term in (lne) in the asymptotic 
form of J for e+O. 

- 1  

6. Straight centreline with arbitrary orientation 
The results given in the previous section for the force acting on a long slender body 

will now be used to determine the drag force for translation in an arbitrary direction 
of a long slender body for which the body centreline is straight. The cross-section is 
considered to be of arbitrary shape. We define a set of rectangular Cartesian axes 
( r l ,  r2,  r3 )  with origin 0 at the midpoint of the centreline and with the r,-axis in the 
flow direction. The body centreline, given by r = R(s) ,  is thus 

Ri(s) = (6.1) 
where p is the unit vector along the body axis (see figure 5 ) .  The dimensionless 
resistance force per unit lengthfls) given by (5 .2)  and (5.4) may, after a considerable 
amount of calculation, be shown to be 

- 1 -$(cos@?-2e) [E,[$Re (1 -cosO) (1 + s ) ]  1 1 -e-iRe(l+cosB) (1-8) 

+In (1 - cos e)] - $ ( G O ,  0s- 2e) [E,[$Re (1 + cos 8) (1 - s )]  + In (1 + cos O ) ]  

- (cos 0s- Se) (y + In +Re&,) + $ cos Bp- e + 2e. K+ cos @In K 

(6 .2)  
where y is Euler’s constant, 

E,(x) = I I F d T  
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I 

I rs 

FIGURE 5. The orientation of the body with respect to the free stream. 

is the exponential integral and where B is the angle between the free-stream direction 
e and the body axis /3, i.e. e,/3 = cosB. The total dimensional force F acting on the 
body 

(6.3) 

is therefore 

2 cos Be- (2 - cos B+ cos2 0) /? 
2Re (1  - cos 6 )  

[E,[Re (1 - cos B ) ]  
F 

2 cos Be - (2 + COB 8 + cos2 0) /? 
2Re (1 + cos 0) 

+In [Re (1 - cos O ) ]  + y -Re (1 - cos 0)] - 

x [E,[Re (1 + cos O)]  + In [Re (1 + cos B ) ]  + y -Re (1  + cos B ) ]  

- (COB O/?- 2e) [E,[Re (1 - cos B ) ]  + In ( I  - cos 8)  +E,[Re (1 + cos B ) ]  

+In (1 + c d )  + In R, ds 

+ 2(y + In ;Re)] + 3 cos 0p- 2e + 2e - 

The torque G acting on the body about the origin 
centreline) is 

1 

Gt = eijk pj I-, sfk(s) ds, 

(6.4) 

(the midpoint of the body 

(6.5) 

15-2 
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I 

I 
FIGURE 6. The drag and lift components acting on the body. 

where eiik is the permutation symbol. Thus, upon the use of the expression forfls) 
from (6.2), one obtains the expressions for the torque as 

G cos 0 
= (&I ({Re (1 - cos 0) 

1 
e-Re(l-cos8): 1 

-E,[Re (1 - cos 0)] - In [Re (1 - cos O ) ]  - y 
Re (1 - cos 0) 

x[,+2 

cos 0 e-Re(l+cos8) - 1 
- E,[Re (1 + cos 0)] 

+Re(i+coso)  Re( l+cos0 )  

e-Re (l-cosB) 1 
Re ( 1  - cos0) Re (1 -cos 0) 

+ 
-In [Re (1  + cos 0)] - y 

(1- 
Re (1 - cos 0) . 

+2[  - 

+Re (1 + (1- + 1 e-Re (l+cos 8) 

cos 0) Re (1 + cos 0) Re (1 + cos 0) 

6.1. The special case of circular cross-section 
For a body with circular cross-sectional shape we have 

K(s) = 0 and lnK(s) = 0 for -1 < s < 1 (6.7) 
with R,(s) now being the cross-sectional radius at position s. If the body centreline 
is taken to lie in the (rl,r,)-plane, the total force I; acting on the body can be 
decomposed into a drag component D parallel to the flow and lift component L 
perpendicular to the flow (in the r,-direction) (see figure 6). Expressions for D and L 
are thus obtained from (6.4) as 

- 4n( 2 - COS' 0) 
(6.8) 

- D 
-- 
lLUa In K + F,(Re ; 0) + 
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where 

cos2 0 
P,(Re;8) = - [&?,(Re (1 - C O S ~ ) ]  + In [Re (1 - cos #)I + y-Re (1 - cos 011 

+- [&,[Re (1 + cos 0)] + In [Re (1 + cos 0)] +?-Re (1 + cos 0)] 

+ (2 - cos2 0) [EJRe (1 - cos 8)] - 

+E,[Re(l+cosB)]- 

i 2Re 
cos2 0 
2Re 

e-Re (1-cos 81- 1 
+In (1 - cos0) 

Re (1 - cos 0) 
e-Re ( l f c o s  6') - 1 

+In (1 + cos 0) 
Re(l+cosB) 

447 

1 
2(2 - cosz 0) ' 

+ 2(y + IniRe)] + 3 cos2 0 - 2 

and 

+o - , 
(ltKT 

+ 2.n sin 28 - - L 

where 

(6.9) 

(6.10) 

cos 0 + cos2 0 sin 
2Re(l-cos0) 

F,(Re ; 0) = { (2 - 
. 

[El[Re (1 - cos 0)1 + ln [Re (1 - cos 

(2 + cos 0 + cos2 0) sin 0 
2Re(l+cos0) 

+ y -Re (1 - cos O)] - [E,[Re (1 + cos 0)] 

e-Re(l-cos6') - 1 L 

- +In (1 - cos 0) +E,[Re (1 + cos B) ]  
Re (1 - cos 0) 

(6.11) 
1 e-Re (lfcos6') - 1 

- +ln(1+cos0)+2(y+ln~Re) 
Re (1 + cos 0) 

From (6.6) the torque is found to  be (O,O, G) where 

] (ltK)3 
slnR,(s)ds + O  - , (6.12) 

G 
,U Ua2 

where 

e-Re (l-cos 6') - 1 
-El[Re (1 - cos 0)] FG(Re ; 0) = [2+2 Re(1-cos0) 

cos 0 e-Re (l+cos 8) - 1 

[ 2 + 2  Re (1 + cos 0) 1 Re (1 + cos 0) 
-ln[Re(l -cos@)]-y + 

1 
1 -E,[Re (1 + cose)] -In [Re (1 + cose)] - y  

1 - e-Re (i-cose) 

-'[Re (1 - cos 0) (1- Re (1 - cos 0) 1- Re (1 + cos 8) 
1 -e-Re(l+cosO) 

X ( 1 -  Re (1 + cos 0) )]}sin 0. (6.13) 
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FIGURE 7. The hehaviour of FD as a function of Re for various values of 8. 

The values of the integrals rr In R,(s) ds and 1: s In R,(s) ds 

appearing in (6.8), (6.10) and (6.12) may be readily calculated for a given body 
shape, with the latter integral being zero for bodies with fore-aft symmetry. 

It is convenient to recast the expressions for the drag and lift, namely (6.8) and 
(6.10), into the following forms: 

for the drag, and for the lift 

(6.14) 

(6.15) 

where D, and L, are the Stokes’ drag and lift given by 

- 4 q 2  - cos2 e)  
(6.16) Ds - -- 

’‘a lnK+FD(Re = 

and 
L 21t sin 28 s= 

’‘a lnK+E”,(Re = 
(6.17) 
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FIGURE 8. Behaviour of %r, as a function of Re for various values of 8. 

The functions FD and FL are defined by 

and 

FD(Re; 6 )  = FD(Re;8)-FD(O;19), 

FL(Re;8) = FL(Re;8)-FL(O;19). 

(6.18a) 

(6.18 b) 

The behaviour of FD, gL and FG as functions of Re, for different orientations 
( I 9  = O", 15", 45", 75", 90") is plotted in figures 7, 8 and 9 respectively. From figure 7 
it is readily seen that TD is a monotonically increasing function of Re for any 
orientation, indicating, as expected, an increase in the magnitude of the drag D as Re 
increases for a fixed value of K (see (6.14)). Note also (figure 8) that the lift decreases 
(in magnitude) with increasing values of Re (see (6.15)). 

As far as the torque on the body is concerned, it is seen from (6.12) that the effect 
of fluid inertia is to cause an additional torque on the body of 

G 
(6.19) 

with the remaining term in (6.12) representing the torque on the body which would 
exist at Re = 0 (for bodies lacking fore-aft symmetry). For bodies with fore-aft 
symmetry the torque is just that given by (6.19) so that its behaviour can be 
determined from F,(Re; 0 )  plotted in figure 9. Thus for such bodies it is observed 
that, for any orientation, as the Reynolds number is increased from zero, the torque 
increases (in magnitude) from zero to reach a maximum a t  a relatively low Reynolds 
number (in the range 3 to lo), and then to decrease and vanish asymptotically as 
Re += co (not shown). For a body possessing fore-aft symmetry and sedimenting, there 
seem to be only two orientations for which the torque G is zero: 8 = 0" and I9 = 90", 
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Re 

FIGURE 9. Behaviour of F, as a function of Re for various values of 0. 

i.c. the body centreline is respectively in the vertical or horizontal direction. The 
search for other orientations for which G vanishes (other than Re = 0) is difficult to 
carry out analytically; however, FG was calculated numerically for every 5" in the 
range from 0" to 90" as well as being shown to  be negative from the derived 
asymptotic forms of FG from 8 + 0" and for 8 + 90" (not shown). Thus for 0 < 8 < in, 
the torque G is positive and for in < 8 < IT, G is negative, so that as the body 
sediments, it will rotate to the equilibrium horizontal orientation 8 = an. This 
orientation is stable whilst the equilibrium vertical orientation 8 = 0 is unstable. 
This result is similar to that obtained by Cox (1965) for a spheroid of small 
eccentricity (see also Leal 1980). For the case of the body not possessing fore-aft 
symmetry the situation is different since the integral in (6.12) does not vanish and 
also the centre of gravity of the body is not a t  its midpoint. Furthermore, for such 
a sedimenting body the torque due to gravity (and buoyancy) about the origin (s = 0) 
is of order l/ln K (since the drag force which balances the gravity force is of order 
l/ln K )  and hence dominates over the hydrodynamic torque given by (6.12). Thus it 
follows that such bodies sediment with their centreline in the vertical direction and 
their centre of gravity below their midpoints = 0. Intermediate situations for bodies 
deviating slightly from fore-aft symmetry can exist and may be expected to possess 
equilibrium orientations a t  values of 8 different from 8 = 0 and an. These situations 
require further investigation, and will not be considered here. 

6.2. The low-Reynolds-number limit 
The expressions for D, L and G for the body of circular cross-section are now 
considered for the case where Re is small. More specifically we seek the values of the 
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functions FD(Re;O), FL(Re;O) and FG(Re;O) given by (6.9), (6.11) and (6.13) 
respectively in the limit Re + 0. These are 

FD(Re ; 0) - {2(1-4 In 2) + (1 +4 In 2) cos2 0 

1 + [ 2  -a( cos2 0 + 5 )  cos2 01 Re} + O(Re2), 
2(2-cos20) 

(6.20) 

F,(Re ; 0) -;-2 ln2 + (7  + cos2 0) +Re +O(Re2), (6.21) 

and Jh(Re ; 0) N -&(sin 20) Re + O(Re2). (6.22) 

Brenner & Cox (1963) obtained an expression for the force exerted on a body of 
arbitrary shape by a uniformly moving fluid a t  small Reynolds number. This force 
may be written in dimensionless form as 

1; = 6 x [ S i j + ~ R e { 3 $ i i - 6 i ~ ( $ k , e k e , ) ~ l  $jme,, (6.23) 

where $ii is the Stokes resistance tensor for the body and e, the unit vector in the flow 
direction. Substituting into (6.23) the value of $t, for a slender body obtained by Cox 
(1970) expressions for FD and FL may be obtained which are identical to those given 
by (6.20) and (6.21). 

7. The case of an infinite cylinder 
The special case of an infinite cylinder of arbitrary cross-sectional shape is 

considered in the present section. The force per unit length exerted by the fluid on 
the body is calculated ; in particular, the expression for the resistance of a straight 
cylinder with uniform circular cross-section is compared to that obtained by 
Proudman & Pearson (1957) valid for small Reynolds number R based on the radius 
of the cylinder. 

In  terms of the present theory the force per unit length on an infinite cylinder is 
obtained by taking the limit K + O  keeping li = JUJ b/v fixed but small. Upon 
replacing Re in (6.2) by R/K and taking the limit as K + O ,  the force per unit length 
becomes 

As) C D-C(lnR-1n~)  
2xpa l n ~  (In K)' + (AT ' -- - -+ 

whcre C and D are analytic at K = 0. For the present expansion procedure to be valid 
the second term in the expansion must, be much smaller than the first as K + 0, i.c. 

This shows that for the above theory to  be valid, R must satisfy 

R < KI-' as K + O ,  (7.3) 

where 6 is a fixed positive constant much smaller than unity. Therefore for the case 
of the infinite cylinder considered by Proudman & Pearson for which K = 0 with R 
fixed and small, the condition (7.3) is violated. It is obvious that under these 
conditions the result of Proudman & Pearson cannot be obtained. Thus some 
modifications to the present theory are required to obtain an expression for the 
resistance force on a slender body in the limit K + 0 with R fixed and small (i.e. when 
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( b )  expansion in (lnR)-'. 

(7.3) is violated). It turns out that  these modifications are minor and the procedure 
necessary is described below. 

We first consider the case of a cylinder of finite length (with ccntrclinc not 
necessarily straight and cross-section not necessarily circular) and seek an expansion 
for the force per unit length in terms of (lnR)-l rather than (lntC)-l in the limit as 
R + 0. In the outer region the characteristic length is now taken to be v/1 UI (whereas 
previously i t  was taken to be a) .  A comparison between the regions of expansion for 
the expansion in (In ~ ) - l  and for the expansion in (in R)-l is shown diagrammatically 
in figure 10. We denote by d = s'lUl/v the new dimensionless arclength, so that s" = 
sRe. The tilde over any variable indicates its value in this new outer region (i.e. made 
dimensionless with respect to v/l Ul) so that fi = u and @ = p/Re .  In  the inner region 
the characteristic length remains b. Consequently the inner governing equations 
together with the boundary conditions are exactly as considered previously in $ 3 ;  
inertia effects are neglected since they are of O(l2).  The inner boundary conditions for 
the outer solution remain exactly as in (3.6) with In K replaced by 1nR. In  the outer 
region the governing equations become 

G . + f i  = -+jj+qqi; W.6 = 0 (7.4) 

with the boundary condition 
i i+e  as F+m. (7.5) 
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Expanding ii and jj as 

2 2 r? c=e+--I-+O ~ , f i = - + O  - 
In& (IbR) 1:; (ha) 

and following exactly the same procedure as in 53.2 the force per unit length then 
becomes 

+ e - (i t t  - I )  + 2e- K(G) + e. tt lnK(G) - + 0 - ](ha)’ (1n’R)” (7.7) 

where R, is identical to R, but expressed as a function of s“ instead of s ,  and where 

The integrand X in this expression has ex-actly the same form as the one in (5.4) with 
Re and R-R substituted by 1 and R”-R” respectively. Upon changing variables in 
(7.8), one obtains 

with E* = €/Re. 4 has exactly the same value as 4 but with e* instead of e .  We now 
show that there is an overlap of the domains of validity for the expressions (7.7) (for 
R --f 0 with Re =k 0, fixed and finite) and ( 5 . 2 )  (for K -+ 0 with Re =+ 0, fixed and finite). 
The forcefls), given by (5 .2) ,  may be written in the form 

(7.10) 

where 

and 

A(s)  = e.(tt-21) (7.11) 

- ( t t -  2 4  + e. ($ t t - / )  + 2e. K+ e. tt 1nK. (7.12) 

From the expression for Jgiven by (5.4) it may readily be shown that B(s, Re) tends 
to a finite limit as Re + 0 (corresponding to the solution for Re = 0) and also that 

B(s, Re) - - (1nRe) A(s)  + O(Reo) (7.13) 

as Re + 00 (as may be shown by changing variables s’ = sRe and R’ = Re R in (5.4)). 
Equation (7.7) can be written as 

(7.14) 

since as E + 0, J(e)  - - e In E + A ,  + o( l), where A,  is a constant independent of e,  so 
that 

+ A  = J(e)+elnRe. (7.15) 

As) A ( s )  B(s,Re)+lnReA(s) 
2npa - +  1nR (lnR)2 +$A)” 
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K 

FIGURE 11. Domain of validity in (R,K)-diagram of (7.10). H Domain of validity in 
(R. K)-diagram of (7.14). Common domain of validity of (7.10) and (7.14). 

Expansion (7.10) is valid for Re + O ,  while expansion (7.14) is valid for Re +. co, since 
by (7.13), B(s, Re) + (1nRe) A(s )  is finite in this latter limit. Now for Re fixed and as 
K + O  one has 

and 

3 1 1 1nRe ----- 
1nR 1nK ( l n X ) 2 f o ( k )  

3 1 1 --- 
(lnR)2 (InK)'+'(&) ' 

( 7 . 1 6 ~ )  

(7 . l f ib)  

which upon substitution into (7.14) yields (7.10), showing that both expansions are 
valid for non-zero and fixed Re as K + 0. Thus there is a common domain of overlap 
between the two expansions. While (7.10) is valid only as long as (7.3) is satisfied, it 
may be shown in a similar manner that (7.14) is valid only as long as Re is not t,oo 
small with 

K < 

(where 6 is a fixed positive constant much smaller than unity). This condition will 
ensure that as K --z 0, R + 0, the second term in (7.14) is much smaller than the first. 
The regions of validity for (7.10) and (7.14) in the (I?, K)-plane are shown in figure 11. 
The force per unit lengthfls) given by (7.10) and (7.14) can, in their domains of 
validity, be written respectively as 

( 7 . 1 7 ~ )  

, i= (1 ,2 ,3 )  

(7.176) 

where A and B are givcn by (7.11) and (7.12). Thus a uniformly valid expression for 
As) for the double limit R --f 0 and K + 0 is given by 

(7.18) 



Inertia effects on the motion of long slender bodies 455 

It is to be emphasized again that the equivalence of the two forms of expansions, 
namely (7.17a) and (7.176) ceases to hold in the case of total absence of inertia, i.e. 
Re = 0, or that of an infinite cylinder, i.c. as Re + CO. In  particular, when Re+0, 
( 7 . 1 7 ~ )  must be used, and when Re+ 00 i t  is (7.17b) which becomes valid although 
(7.18) can be used for either case. Thus results for drag, lift and torque written in the 
forms (6.8), (6.10) and (6.12) may be considered as being universally valid. 

The force per unit lengthfls) (determined by (6.2)) on a straight circular cylinder 
with slowly varying cross-sectional radius R,(s) when compared with (7.10) gives the 
values of A ( $ )  and B(s, Re). Taking the limit as Re + 00 and substituting into (7.14) 
yields the force per unit length in this limit as 

(cos8/?-2e)- ~ {+(cos8/?-2e) [In (sin2@ 
(In'RY 

As) -- ~ 

2npU - (1n'R) 

+2(y--ln 4) + 2  In R,(s)]- cos 0/3+ e}+O ~ . (7.19) ( ln1R)3 

Setting 8 = in and R,(s) = 1 into (7.19), one obtains the drag force on an infinite 
circular cylinder of constant radius placed perpendicularly to the flow as 

(7.20) 

which agrees with the result obtained by Proudman & Pearson (1957) for this case. 
It is worth noting that (7.19) with R,(s) = 1 gives the drag force per unit length on 

an infinite cylinder making an angle 8 with the flow direction. However, this result 
ceases to be valid in the limit 8 + 0", i.e. when the body centreline is aligned with the 
flow direct,ion: the term ln(sin'8) becomes singular. This is to be anticipated 
since in this case the boundary-layer thickness grows continuously without limit as 
the distance from the upstream cylinder end increases. 

8. Discussion 
The drag force on a slender spheroid with its symmetry axis placed perpendicular 

to  the flow direction has been obtained theoretically by Chwang & Wu (1976) under 
the same conditions as has been assumed here, namely K 4 1, R 4 1 with Re of order 
unity. For this case with 8 = 90" and R, = (1 -s2);, the value of D given by (6.8) 
gives 

(8.la) 
1 

(lnK-l)-{El(Re)+Re-l(l -e-Re ) +In ($Re) +r-#} 
- D 

8npUa 
-- 

whilst that given by Chwang & Wu is 

(8.lb) 

The reason for this discrepancy is that Chwang & Wu were unable to perform a 
proper matching procedure a t  all points along the body axis (because they had 
previously assumed incorrectly that the drag force per unit length would be 
independent of position along the body axis). Instead they performed the matching 
a t  only one point on the body axis, namely the centre, and in so doing obtained a 

1 
(In K-l )  -{E,(iRe) + In (;Re) + y-$} '  

- - D 
8npUa 
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FIGURE 12 (u, b ) .  For caption see facing page. 

result (8.16) which was only approximately correct. For Re+0, (8 . la )  and ( 8 . l b )  
agree to order Re+' with both giving 

(8.2) 
D 1 

- N  

8npUa 

However for Re + co, the present result (8.1 a )  gives 

(In K-' )  + ($+In 2) -:Re + . . . ' 

D 1 
---N 

8npUa (In R-l) - y+$+ln 2 
( 8 . 3 ~ )  
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FIG~JRP 12. Dimelisionless drag force per unit length f,/ZqdI (given by (8.9)) plotted as a function 
of dimensionless distance a*/a from the body nose for RK = (6'U/av) = for various body 
shapes : (a )  n = 0, a cylinder ; ( b )  n = ;; (c) n = 4, a paraboloid and ( d )  n = 1, a cone. Graphs are drawn 
for various values of Re 8' (8 is in radians). 

whereas that of Chwang & Wu, (8.1 b) ,  gives 

1 
(In R-l) - y + t + 2 In 2 ' 

N 
D 

87~pUu 
(8 .3b)  

I n  this limit Re + 00, if one takes the drag force per unit length of body as that given 
by (7.20) (obtained by Proudman & Yearson) with Reynolds number based on the 
local cross-sectional radius (i.e. R is replaced by RZ/l-sz in (7.20)) and integrates 
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along the body axis, the drag force D obtained is that given by thc prcwnt result 
(8.3a) (and not by (8 .3b )  obtained by Chwang & Wu). 

An interesting use of the result (6.2) for the force per unit length on a slender body 
with straight centreline is the calculation of the way in which the drag forcelunit 
length fD = f e e  varies along a slender body close to the nose s = - 1 for when the 
body is aligned (0 = 0) or almost aligned (0 4 1) with the flow direction. We therefore 
consider 

0 4 1 ,  t - g l ,  

where t = s+ 1 is dimensionless distance back from the body nose. If the dimensional 
cross-sectional radius is b* = R , K ~  a t  a distance a* = ta from the body nose 
(b* 4 a*), then we obtain for Re+O 

This, as expected, depends on the body length (however long it may be) and does not 
change rapidly with 8. However for Re --f CO, 

which is independent of a and changes rapidly when 13 is of order (a*U/v)-i  (which is 
small if a*lJ/v + 1 ) .  This is expected since now a boundary layer forms at  the body 
nose so that the flow behind the nose is not aKected by the flow downstream (and 
hence by the length of the body). In  addition, changes in flow occur for 8 !z (a*lJ/v)-; 
since this is the value of 0 for which, a t  a distance a* behind the nose, the hotly passes 
outside of its own wake. It is to be noted that the result (8.5) takes the form 

and the form 

For body nose shapes of the form 

b*/b = (a*/a)n where n 0 

(8.5) reduces to 

- 2 (.. ($Re O2 c)) + In ($Re O2 ($))}I-' , (8.9) 

where RK = (bU/v)  (b /a )  4 1.  This dimensionless drag force per unit length has been 
plotted as a function of the dimensionless distance (a*/a)  from the nose, for various 
body shapes (n  = O , + , + ,  1)  in figure 12, from which it is observed that the drag per 
unit length can either decrease (n = 0) ,  increase (n  = 2 ,1 )  or pass through a minimum 
(n  = +) as one moves downstream from the nose. If fL, the r2 component off (see 
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figure 6 )  is the lift force per unit length, then calculations show that ( -  fL/2n8) 
has qualitatively the same behaviour as fD. 

The behaviour of the drag and lift forces per unit length on the body observed 
above for Re+ co with 6 small is reflected by the total drag D ,  lift L and torque G 
on the body. From (6.8)-(8.13) we can obtain for 8+0  with a general value of Re 

- [ l n ( ~ - ' ) - i {  r : l n  Rsds+El(2Re)+In(2Re)+y+2-41112 
4npaU 

-1 1 
2Re 

+ ~ (E,(2Re) + In (2Re) + y + 1 - 2Re - ePzRe)}] , (8.10) 

In R, ds +E1(2Re) + In (2Re) + y - 4 In 2 
4npaU 

- Re-' (E1(2Re) + In (2Re) + y - t + (8 .11)  

-- 8(ln(K-1))-2 
G 

2npa2U 

+- E,(2Re) + In (2Re) + y-4 + 2Rec1( 1 -e-2Re 
2Re 7 

These results (8.10)-(8.12) are not valid for 8 =l= 0 with Re 9 1 (for which Re02 is of 
order unity), the equations (6.8)-(6.13) then yielding the following results (valid for 
the entire range of Re) : 

In&, ds+E,( $Re 8') + In (BRe @) 
47Epau 

1 
1 )  +E,(2Re) +In 2Re - In 2 -- (e-2Re - 1) 

2 + 2y- 3 In 2 -- (e-iReo2 - 
Re 8' 2Re 

1 
2Re 

+- [El($Re O z )  + In (;Re 8') +2y-iRe 8' 

+E1(2Re) + In (2Re) - 2Re] + 1 , 11' (8.13) 

2 
In R, ds + - -  (E,($Re P )  + In (gRe 1 9 ~ )  

4xpaU Re 82 

+ y --'Re 2 8' + 1 - e-iReo*) + &',($Re 02) + In (;Re 8') + 2y-  1-4 In 2 

1 
Re 

--[El(2He)+1n ( 2 R e ) + ~ + $ ( e - ' ~ ~ -  l)]+E,(2Re)+ln (2Re) 

-8(ln (K-'))-'[ -2SilslnR,ds+,{&,(tReBl)+ln 2 (+Re02)+y} 
2npa2U -1 Re 8 

2 
2Re Re 

E1(2Re) +In (2Re) + y -4 + - ( 1  - e-2Re) 

These results, for a finite cylinder (R ,  = 1 )  with K = lop3 have been plotted in 
figures 13, 14 and 15. Thus i t  is seen that in the limit of 8 + 0, the dimensionless drag 
and lift increase monotonically with Re (as was observed in figures 7 and 8 for larger 
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FIGURE 14. Dimensionless lift force ( -L/4npaU0) plotted as a function of Reynolds number 
Re = aU/v for various values of 0 for a circular cylinder with K = (0  is in radians). 

values of 0)  but increase more rapidly with Re when 8 is sueh that the body passes 
outside of its own wake (Re02 %- 1). The dimensionless torque in the limit 8+0 
increases from zero a t  Re = 0 to a maximum value of 1.013(ln ( K - ~ ) ) ~  a t  Re = 37.44, 
thereafter tending asymptotically to a value of (In ( K - ~ ) ) '  as Re + co. However, when 
8 is such that the body passes outside of its own wake (Re O2 % 1) the dimensionless 
torque instead tends to zero as Re --f co. 
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FIGURE 15. Dimensionless torque ( G ( l n ~ - ' ) ~ / 2 ~ p u ~ U B )  plotted as a function of Reynolds 
number Re = uU/u for various values of 19 for a circular cylinder (0 is in radians). 

If we consider the dimensionless torque G/2n,uu2U as a function of 8, then for 
Re --z co, equations (6.12) and (6.13) yield for a body with fore-aft symmetry 

c: - (In ( K - ~ ) ) ~  Re-' cot 8 
2npu2U 

x (2  1nRe + 2 y +  (1 + cos8) In (1 - cos 8 )  + (1 - cos8) In (1 + cos8)). (8.16) 

For Re --f co, this possesses a maximum for a value of 8 of 

8 - 4 2  el-b Re-;, 

for which -- - (In ( ~ - ' ) ) ~ 2 1 / 2  eb-' Rep;. 
2npu2U 

G 

(8.17) 

(8.18) 

From this result (and from figure 9) and from (6.8) and (6.10), it is interesting t,o note 
that, considered as a function of 8, the drag D is a maximum for 8 = 2. and the lift 
ILI a maximum for 8 x in for all values of the Reynolds number Re. However, the 
t,orque IGI is a maximum a t  8 = 8*, say, where 8* decreases from in a t  Re = 0 to zero 
for Re+ co (with asymptotic value given by (8.17)). 

9. Concluding remarks 
The general theory, presented in $$2-5, gives the force per unit lengthfls) acting 

on a long slender body of arbitrary cross-sectional shape and with curved centreline. 
The body is assumed placed in a uniform undisturbed flow. The ratio K of cross- 
sectional dimension to body length and the Reynolds number R, based on the cross- 
sectional dimension, are assumed small. However, the results obtained, given by 
(5 .2) ,  were found to be valid for K + O  and R+ 0 only if the inequality (7.3) is satisfied. 
In $7, these results were modified to obtain the force per unit length on the body 
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(given by (7.18)) which was uniformly valid for all K and R as K + O ,  R+O. These 
results have been used to solve a varicty of interesting problems. These include : 

(i) The calculation of the force and torque acting upon a long slender rigid bod)? 
placed in a uniform flow. This is carried out by direct application of (5 .2 ) .  ?hc case 
of a body with straight centreline and circular cross-section is prcsented in $6. I n  
particular, the drag on the body is found to increase as the Reynolds number lie, 
based on the body half-length, increases for fixed K ,  while the lift on the body is found 
to decrease as Re increases. It is also established that, for any value of Re, a body 
possessing foreaf t  symmetry would, as it sediments, orientate itself SO that its 
centreline is horizontal. 

(ii) The flow a t  low Reynolds number (i.e. in the limit Re + 0 ) .  The expressions for 
the drag and lift on the body for this situation are given in $6.2 and are found to agree 
with those obtained by Brenner & Cox (1963). 

(iii) The case of flow around an infinite cylinder of arbitrary shape. This is 
considered in $7 ,  where the force per unit length acting on the body is obtained from 
(7.17b) as an expansion in l / lnR instead of l/lnK, since for an infinite cylinder 
K = 0. An expression for the force per unit length, given by (7.19) is obtained for 
an infinite cylinder a t  an arbitrary orientation relative to the flow. In particular, the 
force on an infinite circular cylinder placed in a cross-flow is determined and found 
to agree with the result obtained by Proudman & Pearson (1957). 

(iv) The translation of a slender spheroid in a direction perpendicular to its 
symmetry axis. Thc present theory ($8) corrects carlier results obtained hy Chwang 
& Wu (1976). 

(v) The calculation of the force per unit length and also the total drag, lift and 
torque on a slender body (with straight centreline and circular cross-section) in a 
uniform flow in the limits of Re + 0 and Re + 00 ($8). Of particular interest is the casc 
of Re --f co with the body centreline aligned or nearly aligned with the flow direction. 
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